

DPP - 4

Video Solution on Website:-

Video Solution on YouTube:-

Written Solution on Website:-

https://physicsaholics.com/home/courseDetails/37
https://youtu.be/cOr3w_sNa2s

Q 1. The magnitude of vertical displacement of center of mass of $A+B$ ($A \& B$ having same mass) system till the string becomes vertical is: (where A is fixed)

https://physicsaholics.com/note/notesDetalis/49

B

(a) zero
(b) $\frac{L}{2}(1-\cos \theta)$
(c) $\frac{L}{2}(1-\sin \theta)$
(d) none of these

Q 2. In agravity free space, a man of mass M standing at a height h above the floor, throws a ball of mass m straight down with a speed u. When the ball reaches the floor, the distance of the man above the floor will be
(a) $h\left(1+\frac{m}{M}\right)$
(b) $h\left(2-\frac{m}{M}\right)$
(c) 2 h
(d) a function of $\mathrm{m}, \mathrm{M}, \mathrm{h}$ and u

Q 3. A man of 50 kg mass is standing in a gravity free space at a height of 10 m above the floor. He throws a stone of 0.5 kg mass downwards with a speed $2 \mathrm{~m} / \mathrm{s}$. When the stone reaches the floor, the distance of the man above the floor will be
(a) 9.9 m
(b) 10.1 m
(c) 1.0 m
(d) 20 m

Q 4. Consider a two particle system with particles having masses m_{1} and m_{2}. If the first particle is pushed towards the center of mass through a distance d, by what distance should the second particle be moved, so as to keep the center of mass at the same position -
(a) $\frac{m_{1}}{m_{2}} d$
(b) d
(c) $\frac{m_{2}}{m_{1}} d$
(d) $\frac{m_{1}}{m_{1}+m_{2}} d$

Q 5. Two bocks of masses 10 kg and 20 kg are placed on the X -axis. The first mass (10 kg) is moved on the axis by a distance of 2 cm . By what distance should the second mass be moved to keep the position of the center of mass unchanged?
(a) 1 cm
(b) 2 cm
(c) 3 cm
(d) 4 cm

Q 6. Two blocks of masses 10 kg and 30 kg are placed along a vertical line. The first block (10 kg) is raised through a height of 7 cm . By what distance should the second mass be moved to raise the center of mass by 1 cm ?
(a) 1 cm
(b) 6 cm
(c) 7 cm
(d) 8 cm

Q 7. A boy is standing at the center of a boat which is free to move on water. If the masses of the boy and the boat are M and m respectively and the boy moves a distance of 1 m forward then the movement of the boat is \qquad . meters
(a) $\frac{M m}{M+m}$
(b) $\frac{m}{M+m}$
(c) $\frac{M}{M+m}$
(d) $\frac{m}{M-m}$

Q 8. Two persons A and B of weight 80 kg and 50 kg respectively are standing at opposite ends of a boat of mass 70 kg and length 2 m at rest. When they interchange their positions then displacement of the center of mass of the boat will be :-

(b) 30 cm towards right
(c) 30 cm towards left
(d) remains stationary

Q 9. A man weighing 80 kg is standing at the center of a flat boat and he is 20 m from the shore. He walks 8 m on the boat towards the shore and then halts. The boat weight 200 kg . How far is he from the shore at the end of this time ?
(a) 11.2 m
(b) 13.8 m
(c) 14.3 m
(d) 15.4 m

Q 10. A man of 80 kg attempts to jump from the small boat of mass 40 kg on to the shore. He can generate a relative velocity of $6 \mathrm{~m} / \mathrm{s}$ between him and boat. His velocity towards shore is
(a) $2 \mathrm{~m} / \mathrm{s}$
(b) $3 \mathrm{~m} / \mathrm{s}$
(c) $4 \mathrm{~m} / \mathrm{s}$
(d) $5 \mathrm{~m} / \mathrm{s}$

Q 11. A boy of mass 50 kg is standing at one end of a boat of length 9 m and mass 400 kg . He runs to the other end. The distance through which the center of mass of the boat boy system moves is
(a) 0 m
(b) 1 m
(c) 2 m
(d) 3 m

Q 12. A 1 kg block slides down an inclined plane of mass 3.2 kg having inclination 45°. If the inclined plane is fixed and the 1 kg block slides without friction, find the acceleration of the center of mass of the system of the block and inclined plane (take $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$)
(a) $2.1 \mathrm{~m} / \mathrm{s}^{2}$
(b) $0.9 \mathrm{~m} / \mathrm{s}^{2}$
(c) $9.8 \mathrm{~m} / \mathrm{s}^{2}$
(d) $1.7 \mathrm{~m} / \mathrm{s}^{2}$

Q 13. A boy of mass 40 kg jumps off a boat with a velocity of $3 \mathrm{~m} / \mathrm{s}$ w.r.t. ground. With what momentum does the boat move ?
(a) $-210 \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
(b) $-120 \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
(c) $-125 \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
(d) $-215 \mathrm{~kg}-\mathrm{m} / \mathrm{s}$

Q 14. A bullet is fired from a gun with a velocity $600 \mathrm{~m} / \mathrm{s}$. The recoil velocity of the gun is 3
m / s. What is the ratio of the mass of the gun and bullet ?
(a) $100: 1$
(b) $400: 1$
(c) $200: 1$
(d) $300: 2$

Answer Key

Q. 1 b	Q. 2 a	Q. 3 b	Q. 4 a	Q. 5 a
Q. 6 a	Q. 7 c	Q. 8 c	Q. 9 c	Q. 10 a
Q. 11 a	Q. 12 d	Q. 13 b	Q. 14 c	

