

DPP – 4

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/37

- Video Solution on YouTube:-
- https://youtu.be/c0r3w_sNa2s
- Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/49

Q 1. The magnitude of vertical displacement of center of mass of A+B (A & B having same mass) system till the string becomes vertical is : (where A is fixed)

- Q 2. In a gravity free space, a man of mass M standing at a height h above the floor, throws a ball of mass m straight down with a speed u. When the ball reaches the floor, the distance of the man above the floor will be
 - (a) $h\left(1+\frac{m}{M}\right)$ (b) $h\left(2-\frac{m}{M}\right)$ (c) 2h (d) a function of m, M, h and u
- Q 3. A man of 50kg mass is standing in a gravity free space at a height of 10m above the floor. He throws a stone of 0.5kg mass downwards with a speed 2m/s. When the stone reaches the floor, the distance of the man above the floor will be (a) 9.9 m
 (b) 10.1 m
 - (c) 1.0 m (d) 20 m
- Q 4. Consider a two particle system with particles having masses m_1 and m_2 . If the first particle is pushed towards the center of mass through a distance d, by what distance should the second particle be moved, so as to keep the center of mass at the same position
 - (a) $\frac{m_1}{m_2} d$ (b) d (c) $\frac{m_2}{m_1} d$ (d) $\frac{m_1}{m_1 + m_2} d$

- Q 5. Two bocks of masses 10 kg and 20 kg are placed on the X-axis. The first mass (10 kg) is moved on the axis by a distance of 2 cm. By what distance should the second mass be moved to keep the position of the center of mass unchanged?
 - (a) 1 cm (b) 2 cm
 - (c) 3 cm (d) 4 cm
- Q 6. Two blocks of masses 10 kg and 30 kg are placed along a vertical line. The first block (10 kg) is raised through a height of 7 cm. By what distance should the second mass be moved to raise the center of mass by 1 cm?
 - (a) 1 cm (b) 6 cm
 - (c) 7 cm (d) 8 cm

Q 7. A boy is standing at the center of a boat which is free to move on water. If the masses of the boy and the boat are M and m respectively and the boy moves a distance of 1 m forward then the movement of the boat is meters

- (a) $\frac{Mm}{M+m}$ (b) $\frac{m}{M+m}$ (c) $\frac{M}{M+m}$ (d) $\frac{m}{M-m}$
- Q 8. Two persons A and B of weight 80kg and 50kg respectively are standing at opposite ends of a boat of mass 70kg and length 2m at rest. When they interchange their positions then displacement of the center of mass of the boat will be :-

(a) 60cm towards left (b) 30cm towards right (c) 30cm towards left (d) remains stationary

Q 9. A man weighing 80 kg is standing at the center of a flat boat and he is 20 m from the shore. He walks 8 m on the boat towards the shore and then halts. The boat weight 200 kg. How far is he from the shore at the end of this time ?

(a) 11.2 m	(b) 13.8 m
(c) 14.3 m	(d) 15.4 m

- Q 10. A man of 80 kg attempts to jump from the small boat of mass 40 kg on to the shore. He can generate a relative velocity of 6 m/s between him and boat. His velocity towards shore is
 (a) 2 m/s
 (b) 3 m/s
 - (c) 4 m/s (d) 5 m/s (d) 5 m/s

Q 11. A boy of mass 50kg is standing at one end of a boat of length 9m and mass 400kg. He runs to the other end. The distance through which the center of mass of the boat boy system moves is

(a) 0 m	(b) 1 m	
(c) 2 m	(d) 3 m	

Q 12. A 1kg block slides down an inclined plane of mass 3.2kg having inclination 45°. If the inclined plane is fixed and the 1kg block slides without friction, find the acceleration of the center of mass of the system of the block and inclined plane $(take g = 9.8 m/s^2)$ (b) $0.9 \ m/s^2$

(a) $2.1 m/s^2$ (c) 9.8 m/s^2

Q 13. A boy of mass 40 kg jumps off a boat with a velocity of 3 m/s w.r.t. ground. With what momentum does the boat move ?

(d) $1.7 m/s^2$

(a) -210 kg-m/s (b) -120 kg-m/s (c) -125 kg-m/s (d) -215 kg-m/s

Q 14. A bullet is fired from a gun with a velocity 600 m/s. The recoil velocity of the gun is 3 m/s. What is the ratio of the mass of the gun and bullet? (a) 100 : 1 (b) 400;1

(d) 300 : 2

(c) 200 : 1

Answer Key

Q.1 b	Q.2 a	Q.3 b	Q.4 a	Q.5 a
Q.6 a	Q.7 c	Q.8 c	Q.9 c	Q.10 a
Q.11 a	Q.12 d	Q.13 b	Q.14 c	